
Adaptive Mesh Refinement on Overlapping Grids

Bill Henshaw

Centre for Applied Scientific Computing,

Lawrence Livermore National Laboratory,

Livermore, CA, USA 94551

www.llnl.gov/casc/Overture

In collaboration with: Don Schwendeman (RPI)

Talk presented in Sweden June 2004.

1



Talk summary

• Overview of the Overture framework, current projects.

• AMR on overlapping grids, existing capabilities.

• Some sample denonation computations.

• Current work: three-dimensions, moving geometry and AMR, parallel
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Solutions coupled by interpolation

Sample 2D overlapping grids

3



Sample 3D overlapping grids
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Overture supports a high-level C++ interface (but is built
mainly upon Fortran kernels):

Solve ut + aux + buy = ν(uxx + uyy)

CompositeGrid cg; // create a composite grid

getFromADataBaseFile(cg,"myGrid.hdf");

floatCompositeGridFunction u(cg); // create a grid function

u=1.;

CompositeGridOperators op(cg); // operators

u.setOperators(op);

float t=0, dt=.005, a=1., b=1., nu=.1;

for( int step=0; step<100; step++ )

{

u+=dt*( -a*u.x()-b*u.y()+nu*(u.xx()+u.yy()) ); // forward Euler

t+=dt;

u.interpolate();

u.applyBoundaryCondition(0,dirichlet,allBoundaries,0.);

u.finishBoundaryConditions();

}
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Current Projects with Overture

♦ Hybrid (unstructured) grid generation and algorithms (Kyle Chand)

♦ the overlap region is replaced by an unstructured grid (advancing front algorithm).

♦ a stabilized DSI scheme for Maxwell’s equations on hybrid grids.

♦ Deforming boundaries in incompressible flow (Petri Fast).

♦ Multigrid solvers for elliptic problems on overlapping grids.

♦ robust coarsening and adaptive smoothing techniques.

♦ second- and fourth-order accurate, Dirichlet and Neumann boundary conditions.

♦ Incompressible Navier-Stokes solvers for overlapping grids.

♦ fourth-order accurate time accurate solver.

♦ line-implicit pseudo-steady state solver.

♦ High speed reactive flow and adaptive mesh refinement (with Don Schwendeman (RPI))

♦ An overlapping grid solver for the time dependent Maxwell’s equations.

♦ fourth-order accurate, parallel
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Cad fixup

Global triangulation

Overlapping grid

Incompressible flow.

CAD to Mesh to Solution with Overture
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Incompressible flow computations with OverBlown.
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A Parallel 4th-order accurate solver for the time-dependent Maxwell equations

Scattering of a plane wave by a cylinder. Top: scattered field Ex, Ey and Hz for ka = 1/2.

Bottom: scattered field Ex, Ey and Hz for ka = 5/2
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Block structured Adaptive Mesh Refinement

♦ Initially developed by Berger and Oliger (JCP 1984)

♦ Extensions to the Euler equations by Berger and Colella (JCP 1989)

♦ AMR and overlapping grids considered by Brislawn, Brown, Chesshire and Saltzman

(1995), and Boden and Toro (1997)

♦ AMR in Overture has contributions from Brown, Philip and Quinlan.

Some Structured AMR frameworks

♦ AMRCLAW (LeVeque and Berger)

♦ Amrita (Quirk)

♦ Boxlib (Bell et.al., LBNL)

♦ Chombo (Colella et.al., LBNL)

♦ GrACE (Parashar)

♦ PARAMESH (NASA Goddard Space Flight Center)

♦ SAMRAI (Hornung et.al. LLNL)

Reference Tomasz Plewa’s AMR page http://flash.uchicago.edu/∼tomek/AMR
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AMR on overlapping grids

Currently adding AMR capabilities to Overture for overlapping grids.

Some of the issues that need to be addressed

• multiple base grids.

• efficient handling of refinement grids on curvilinear grids.

• support for higher order accurate methods (fourth-order, sixth-order,...)

• updating refinement grids that meet at the overlapping grid boundaries.

• retaining the efficiency of cartesian grids.

• saving and reading solutions and grids from a data base file in an efficient

manner (e.g. for post-processing and restarts).

• graphics.

13



AMR regridding algorithm (Berger-Rigoutsos)

Initial boxTagged points

33 33 33 11 11 33 33 22

Box is split into 2

Number of points in each column

Process is repeated on the
two new boxes

box is split into two

tagged cells initial box process is repeated

(1) tag cells where refinement is needed

(2) create a box to enclose tagged cells

(3) split the box along its long direction based on a histogram of tagged cells

(4) fit new boxes to each split box and repeat the steps as needed.
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t=.75 t=1.25 t=1.5

Adaptive overlapping grids
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Overlapping Grids and AMR

Component grid 1,

base grid 1

Refinement grids

interpolate from

refinements of a different

base grid

Component grid 2,

base grid 2
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The basic AMR time stepping algorithm

PDEsolve(G, tfinal)

{

t := 0; n := 0;

un
i

:= applyInitialCondition(G);

while t < tfinal

if (n mod nregrid == 0)

ei := estimateError(G,un
i
);

G∗ := regrid(G, ei);

u∗

i
:= interpolateToNewGrid(un

i
,G,G∗);

G := G∗; un
i

:= u∗

i
;

end

∆t := computeTimeStep(G,un
i
);

un+1
i

:= timeStep(G,un
i
, ∆t);

t := t + ∆t; n := n + 1;

interpolate(G,un
i
);

applyBoundaryConditions(G,un
i
, t);

end

}
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The basic components of AMR in Overture

Error estimation

• standard error estimators based on first and second differences.

• smoothing of the error and propagation across overlapping grid boundaries.

Regridding

• generation of aligned AMR grids using the Berger-Rigoutsos algorithm.

• Boxlib is used for domain calculus (e.g. intersecting two boxes).

• updating the overlapping grid interpolation points on AMR refinement grids.

Interpolation

• fine to coarse and coarse to fine interpolation

• support for any refinement ratio (1,2,3,4,...) and any order of accuracy.

• high level functions to interpolate the solution from one AMR overlapping

grid to another AMR overlapping grid.

• functions to update all AMR ghost points and hidden coarse grid points on

an AMR overlapping grid.
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AMR on overlapping grids - high-level objects

Grids and solutions on the overlapping grid AMR hierarchy are represented as

CompositeGrid cg; // (derived from a GridCollection)

realCompositeGridFunction u(cg,all,all,all,3); // (3 components)

Individual grids can be accessed as

MappedGrid & mg = cg[grid];

realMappedGridFunction & umg = u[grid];

All grids on a refinement level can be accessed as

GridCollection & rl = cg.refinementLevel[level];

realGridCollectionFunction & url = u.refinementLevel[level];
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amrHype: Solve a convection diffusion equation with AMR

• a small code demonstrating the use of AMR with Overture.

• uses the method of analytic solutions for testing accuracy.

Sample uses of Overture AMR functions:

CompositeGrid cg,cgNew;

realCompositeGridFunction u,error,uNew;

ErrorEstimator errorEstimator;

errorEstimator.computeAndSmoothErrorFunction(u,error);

Regrid regrid;

regrid.regrid(cg,cgNew, error, errorThreshold );

Ogen ogen;

ogen.updateRefinement(cgNew);

uNew.updateToMatchGrid(cgNew);

InterpolateRefinements interp;

interp.interpolateRefinements( u,uNew );
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Testing using the method of analytic solutions

The usefulness of this technique cannot be overstated.

Given a PDE boundary value problem

L(ut, ux, uy, . . .) = F (x, t)

one can create an exact solution, U(x, t) by choosing

F (x, t) = L(Ut, Ux, Uy, . . .)

The Overture OGFunction class defines a variety of exact solutions and their

derivatives to support the method of analytic solutions. For example one could define a

polynomial, trigonometric polynomial, or pulse function

U(x, t) = (x2 + 2xy + y
2 + z

2)(1 +
1

2
t +

1

3
t
2)

U(x, t) = cos(πωx) cos(πωy) cos(πωz) cos(ω3πt)

U(x, t) = a0 exp(−a1‖x − b(t)‖2p) , b(t) = c0 + vt

The polynomial solution is particularly useful since this solution is often an exact

solution to the discrete equations on rectangular grids. The pulse function is good for

AMR.

22



amrHype: Solve a convection diffusion equation with AMR

Traveling pulse analytic solution
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High Speed Reactive Flow Project

♦ Develop software tools for the numerical solution of the reactive Euler equations with a

general equation of state and various reaction rate models.

♦ AMR to resolve shocks/detonations with numerical efficiency

♦ Sub-CFL time step resolution for fast chemical reactions

♦ Overlapping grids to handle complex two- and three-dimensional geometries.

♦ Parallel processing (in progress)

♦ Study detonation dynamics in homogeneous and heterogeneous explosives. For example:

♦ Explore paths to detonation of reactive samples at critical conditions subjext to small

initial non-uniformities

♦ Explore detonation/confinement interactions with applications to detonation

diffraction and failure

♦ explore features and limitations of existing models (e.g. ignition-and-growth), and explore

new models (e.g. multiphase)

♦ Reference An Adaptive Numerical Scheme for High-Speed Reactive Flow on Overlapping

Grids, JCP vol. 191, 2003.
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Numerical Method

Summary:

♦ Domain is covered by a collection of overlapping curvilinear grids.

♦ Solution is advanced in time on each component grid according to a second-order accurate,

shock-capturing, Godunov-type scheme.

♦ Source term is handled with an error-control algorithm allowing sub-CFL time step resolution

♦ Interpolation is used near the overlap boundaries to communicate the solution between

component grids.

♦ AMR is used to resolve the fine-scale structures.

A sample overlapping grid consisting of an inlet grid,

a background grid and a boundary grid
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Reactive Euler Equations
Governing equations (2-D):

ut + f(u)x + g(u)y = h(u)

where
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Variables:

ρ = density (u, v) = velocity

p = pressure E = total energy

λ = n mass fractions R = n reaction rates

E = e +
1

2
(u2 + v2)

where

e = e(ρ, p, λ) =







internal energy per unit mass

(as specified by an equation of state)

26



Reaction and equation-of-state models

One-step:

F
kC−→ P, kC = σ exp

(

1

ε

( 1

TC

−
1

T

)

)

Variables:

F = fuel P = product

T = temperature, = p/ρ TC = cross-over temperature

σ = prefactor (sets time scale) ε = reciprocal activation energy, � 1

Reaction rate:

R = (1 − λ)kC , λ = mass fraction of product

Equation of state:

e =
p

(γ − 1)ρ
+ λQ

where

γ = ratio of specific heats

Q = heat release < 0 (exothermic)
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Chain-Branching: (Kapila)

F
kI−→ Y, kI = σ exp

(

1

εI

( 1

TI

−
1

T

)

)

(initiation)

F + Y
kB−→ ∈Y, kB = σ exp

(

1

εB

( 1

TB

−
1

T

)

)

(branching)

Y
kC−→ P, kC = 1 (sets time scale) (completion)

where

F ,Y,P = fuel, radical, product

TI , TB = cross-over temperatures

εI , εB = reciprocal activation energies

Reaction rates:

R1 = λ2kC , (1 − λ)kC , λ1 = mass fraction of product

R2 = (1 − λ1 − λ2)(kI + λ2kB) − λ2kC , λ2 = mass fraction of radical

Ideal equation of state:

e =
p

(γ − 1)ρ
+ λ1Q1 + λ2Q2

where

Q1, Q2 = heat release to form product (< 0) and radical (> 0)
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Ignition and Growth reaction model (Lee and Tarver, 1980)

F(solid) −→ P(gas)

Reaction rate: (hot spots)

R = kI + kG1
+ kG2

where

kI = I(1 − λ)b (max{ρ − 1 − a, 0})x if λ < λI (ignition)

kG1
= G1(1 − λ)cλdpy if λ < λG1

(rapid growth)

kG2
= G2(1 − λ)eλgpz if λ > λG2

(slow growth)

Mixture JWL equation of state:

e = (1 − λ)es + λeg ,
1

ρ
= (1 − λ)vs + λvg

where

es =
psvs

ωs

− Fs(vs) + Q es = CsTs + Gs(vs) + Q

eg =
pgvg

ωg

− Fg(vg) eg = CgTg + Gg(vg)

and

Closure conditions: ps = pg and Ts = Tg
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Detonation Formation

Geometry: quarter plane x > 0, y > 0

Reaction/EOS: one-step/ideal with

γ = 1.4, TC = 1, ε = .075, Q = −4, σ =
ε

(γ − 1)Q

Initial conditions: prescribed temperature gradient

u = v = λ = 0, p = 1, T = 1 − δ
√

x2 + y2, δ = .0375

Boundary conditions: solid walls on x = 0, y = 0

Base grid: 400 × 400 grid cells for the domain 0 < x < 2, 0 < y < 2

AMR: 2 child grid levels, refinement factor=4
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Detonation in a Quarter Plane

Product fraction, Y , t = 1.5 Product fraction, Y , t = 1.85

Temperature, t = 1.5 Temperature, t = 1.85

Pressure, t = 1.5 Pressure, t = 1.85
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Detonation in a Quarter Plane

Single Base Grid Overlapping Grid
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(d)

Detonation in a Quarter Plane

Solution along x = 0, t = 1.4, 1.5, . . . , 2.0

One-dimensional results in black

Solution along rays through the origin
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Detonation Entering the Annulus Grid

Temperature, t = 1.75 Pressure, t = 1.752.7

.93

5.6

1.0

Figure 1: Behavior of the temperature and the AMR grid at t = 1.75 for a two-

dimensional calculation on a rectangular base grid with an embedded annular grid.
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(b)

Overlapping Grid vs Single Base Grid Results

Figure 2: Behavior of the temperature (a) and pressure (b) along y = 0 in the vicinity of

the detonation at t = 1.8. The red curves are from the grid with the embedded annulus

and the black curves are from the rectangular grid with no annulus.
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Detonation Diffraction
Geometry: smooth expanding channel

Reaction/EOS: chain-branching/ideal with

TI = 3, TB = 0.75, εI = 0.05, εB = 0.125, γ = 1.4, Q1 = −1, Q2 = 0

Initial conditions: steady over-driven detonation.
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AMR: 2 child grid levels, refinement factor=4
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Detonation in an Expanding Channel.
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Temperature, t = 3 Temperature, t = 5

Radical fraction y, t = 3 Radical fraction y, t = 5

Product fraction λ, t = 3 Product fraction λ, t = 5
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Temperature, t = 10 Temperature, t = 14

Radical fraction y, t = 10 Radical fraction y, t = 14

Product fraction λ, t = 10 Product fraction λ, t = 14
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Figure 3: Closeup of the density near the Mach stem. The boundaries of the

refinement grids are shown.
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AMR performance on two detonation problems:

Quarter plane Expanding channel

time steps 12, 418 21, 030

grids (min,ave,max) (2, 57, 353) (5, 274, 588)

points (min,ave,max) (2.0e5, 9.2e5, 1.9e6) (1.2e5, 6.4e5, 1.3e6)

s/step % s/step %

compute ∆un
i,j 13.85 92.7 11.50 82.4

boundary conditions .12 .8 .14 1.0

interpolation (overlapping) .09 .6 .45 3.2

AMR regrid/interpolation .54 3.6 1.62 11.6

other .34 2.3 .25 1.8

total 14.94 100 13.96 100

Table 1: CPU time (in seconds) per step for various parts of the code and their

percentage of the total CPU time per step.
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Current work: three-dimensions

Shock hitting a sphere (Euler) Sphere moving in a tube
with AMR (Euler)
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Current work: moving geometry

♦ The governing equations are written in the moving coordinate system

♦ Support for (1) specified motion, (2) rigid-body motion with forces and

torques determined from the flow.

♦ The grids are moved at every time step and the interpolation points are

recomputed.

Moving valves (INS) Falling cylinders (INS) Rotating body (INS)
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Current work: moving geometry and AMR

♦ Refinement grids move with the corresponding base grid.

♦ The AMR regrid step is performed at the start of the step, followed by the

grid movement.

Moving cylinders (Euler) Cylinder moved by a shock (Euler)
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Current work: A parallel version of the flow solver OverBlown

♦ Grids can be distributed across one or more processors.

♦ Distributed parallel arrays using P++ (K. Brislawn, B. Miller, D. Quinlan)

♦ P++ uses Multiblock PARTI (A. Sussman, G. Agrawal, J. Saltz) for block

structured communication with MPI (ghost boundary updates, copies

between different distributed arrays)

♦ A special parallel overlapping grid interpolation routine has been written.

NP sec/step ratio

1 8.4 1.

2 4.3 2.

Table 2: Shock hitting a cylinder (no AMR), 1.1 million grid-points, Dell worksta-

tion 2.2GHz Xeon.
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P++ : parallel multi-dimensional arrays

P=0 P=1

P=2 P=3

realDistributedArray u

realSerialArray uLocal

P=2

4 processors

Partitioning Type partition; // object that defines the parallel distribution

partition.SpecifyInternalGhostBoundaryWidths(1,1);

realDistributedArray u(100,100,partition); // build a distributed array

u=5.;

realSerialArray & uLocal = u.getLocalArray(); // access the local array

myFortranRoutine(*uLocal.getDataPointer(),...);

u.updateGhostBoundaries();
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Overture and OverBlown are available for download,

www.llnl.gov/CASC/Overture.html
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